

Nature of Science Reference Charts

Lab Safety

Special clothing may be needed in the science lab:

• Gloves protect your hands.

• Safety goggles protect your eyes from splashes or flying objects.

• Lab coats or lab aprons protect your skin and clothes from spills.

• Wear shoes that cover your feet or shoe coverings.

• Be careful with loose long hair, loose clothing, or dangling jewelry.

Always follow your teacher's instructions:

- Follow directions for how to do the lab.
- Follow instructions in an emergency.
- Do not try to guess what to do if you're not sure; ask your teacher for help.

Doing Experiments

Hypothesis: an informed explanation that can be tested.

Prediction: what you expect will happen.

Process for creating a hypothesis and making predictions using your hypothesis:

- 1. Question: Start with a question about how the world works.
- 2. Research: Learn about the topic so that you are informed.
- 3. Hypothesis: Come up with an informed explanation for your question.
- 4. Predictions: See what predictions your hypothesis leads to, so that it can be tested.
- 5. Experiment: Do an experiment to test whether your hypothesis is supported by evidence.

How scientists create a theory:

- It begins as a hypothesis (an informed explanation that can be tested).
- If evidence supports the hypothesis, other scientists will agree with the hypothesis.
- When many scientists agree with the hypothesis, it is called a theory.
- If nearly all scientists agree with the theory, it may be called a principle or a law.
- The theory is adjusted if new evidence is found.

SI Units

Scientists use the SI system of units.

The SI system of units includes prefixes that modify the basic unit.

- centi = hundredth
- milli = thousandth
- kilo = thousand

Some SI Units

Quantity	Unit	Unit abbreviation	Measured using
time	second	S	stopwatch
length	meter	m	meter stick or tape measure
temperature	degree Celsius	°C	thermometer
mass	gram	g	scale or balance

Triple-Beam Balance

To use a triple-beam balance:

- 1. Make sure the pointer lines up with the white line labeled 0.
- 2. Put object on the pan.
- 3. Move the largest slider over until the balance tips to the right.
- 4. Move the largest slider back slightly until the arrow on the slider lines up exactly with a number on the beam.
- 5. The balance should be level or tip back to the left.
- 6. Repeat steps 3, 4, and 5 for the second-largest slider, and then for the smallest slider.
- 7. The balance should now be level, and the pointer should line up with the white line labeled 0.
- 8. Add up the values below each slider to get the object's mass in grams.

Variables and Data

Scientists study the relationship between scientific variables—how one variable affects other variables.

Independent variable: the variable that is changed by the scientist.

- not affected by other variables
- also called the test variable

Dependent variable: the variable scientists observe for changes.

- affected by the independent variable
- also called the outcome variable

Controls: things that are kept constant during an experiment.

There are several common mathematical tools used to help analyze data:

- Mean: the average.
 - found by adding up all your numbers, then dividing by how many numbers you had
 - o often used to represent a set of data as a single number
- Median: the middle number.
 - if you have an even amount of numbers, the median is the number halfway between the two middle numbers
 - if the median and mean are close to one another, it often indicates that the mean is a good representation of the whole data set
- Mode: the number that appears most often.
 - tells the most common measurement
- Range: the largest number minus the smallest number.
 - tells you how much variation is in your data set

Types of Graphs

To create a graph:

- 1. Pick the type of graph based on what kind of data you have and what you want to show most clearly.
- 2. Create your graph, including appropriate axes, titles, and labels.
- 3. Add your data to the graph, making sure to be as exact as possible.

Circle graphs compare parts of a set of data to the whole set.

Bar graphs compare parts of a set of data to each other.

Students' Favorite Drinks

Scatter plots and line graphs show the relationship between two different variables.

Some Types of Scientific Models

- Physical model: a real-life object that shows some features of the modeled object or system.
- Prototype: a model that works like the real object (at least partly); built before the real object to make sure it will work.
- Analogy: a comparison between an object or system and something familiar.
- Mathematical model: a model that uses math to represent an object or system.
- Computer model: a model that uses calculations on a computer to represent an object or system.

Doing Research

Where can you find information?

- books
- journal or magazine articles
- professional scientists attend conferences.
- Internet sources

Reliable source: a source of information that can be trusted to be accurate.

Always think about whether a source is reliable.

- Look for information from expert scientists.
- Look for information that several expert sources agree on.
- Always be skeptical when you hear new information.

Don't copy information directly from another source. Paraphrase it or quote it.

Cite your sources. Explain where the information came from.

Presenting Results

When presenting results, think about:

- Purpose: why you are presenting the results.
- Audience: who will be getting the information.
- Tone: how you write about or present something.

Written reports may be:

• a summary of other scientists' results

- an explanation of the results of a new experiment
 - o for example, a lab report

A lab report should include:

- the question you investigated
- your hypothesis
- your step-by-step procedure
- the data you collected
- your conclusions

An oral presentation is NOT just reading aloud a written report.

- You may have to summarize the main points of a written report.
- Have a visual aid (something for the audience to look at).
- Practice your presentation.
- Make eye contact with the audience.
- Use notes.